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ABSTRACT

The purpose of this paper is to describe a new method for determination
of the total phase difference of light waves without interference fringe
counting. One can build up an interferometer for measurement of
displacements in which the displacements are determined only by the
final values of intensity regardless of the velocity and any prior
displacements that caused the present one. The same thing holds true for
vibration, relief parameters and other values to be measured. Such an
interferometer is devisable thanks to two underlying ideas: first, the
application of controllable phase shift, and secondly, the use of
properties of integer divisability.

PHASE SHIFTING INTERFEROMETRY

Almost all major problems of interferometry are connected with fringe
analysing procedures: fringe peak detection, fringe order determina-
tion, ambiguity in fringe orders, the fractional fringe orders, etc.

As an alternative to classical methods of interferometry there
appeared phase shifting interferometry. The latter is based on measure-
ment of intensity at given points under the changes of phase shift in an
interferometer arm.

One can determine the phase difference of two interfering waves
from the correlation:

I=1(1+V cos @) (1)
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where I is the value of the intensity at the point being analyzed, , is the
initial intensity at this point, V is the visibility of interfringes, @ is the
value of the phase.

If one has [,, upon measuring / and V, one can obtain the value of ¢
from eqn (1). Evidently, this value can be determined within the limits
of one period only.

However, this method of phase determination is practically unaccept-
able due to variability of I, and V. Then eqn (1) is obtained, for
example, for three given values of phase v;:

L=I(1+Vcos(p—w))  i=123 )

Three values of intensity are measured, I, L,, I;. Solving the system of
three equations (2) for ¢, one has'

(L, — L) cos ¥, + (I, — ;) cos Y, + (L, — ) cos 5

tan @ = : , A 3
e (L — L) sin ¢, + (L, — L) sin 9, + (L — 1,) sin y, @)
For ¢y, =0, y,=2a/3 and ¥, =4x/3 one obtains
\/§(I3 = Iz)
tgp=— "
By v o 4)

The method of phase calculation in eqns (2) and (3) is rather sensitive
to phase shifting errors. Therefore other methods with self-correction
were suggested, where real values of phase shifts are evaluated. One of
them is based on four intensity measurements for the phase shifts:
—3a, —a, a, 3a. In this case one has?

Il+12—13—l4
t =t 5
an(p gal]‘12_13+l4 ()
312_313_11+I4
t =
R \/11+12—13—14 (©)

This method of phase calculation (eqns (5) and (6)) gives a large error
for the phase determination, when @ ~ kx, where k is integer. Another
method with five intensity measurement for the phase shifts —2q,
—a, 0, @, 2 does not have this disadvantage.? For a close to /2 the
phase is calculated from the correlation:
2(L- 1)

t | e 7

i A @
To decrease the probable errors one can determine the phase ¢, solving
the system of n equations of the kind in eqn (2) by the least squares
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method. Then the solution is as follows:*?

2 I; sin y;
tan @ = '—:1——— (8)
2 I; cos y;
i=1
where ¢, =2a(i—1)/n,i=1,2,...,n.
For n=4 (v, =0, n/2, x, 37/2) eqn (8) is very simple:°
12 e I4
Il g 13

tan ¢ = 9)

It must be stressed that for phase determination one does not need to
count down the interference fringe; measurement of the intensity at the
point under study will suffice.

The appearance of phase shifting interferometry has been quite an
event due to such recognized advantages as accuracy of measurements,
independence of the results from measurements at adjacent points,
complete automation of the decoding of the fringe patterns with any
shape and degree of complexity. However, this method has a disadvan-
tage of principal importance, the so-called indeterminance to a factor of
2w, or 2m ambiguities. Hybrid methods came into being which
presented a kind of compromise with classical interferometry, as fringes
were again used to eliminate indeterminance to a factor of 2.

INTEGER INTERFEROMETRY

The method described in this paper makes it possible to determine the
total phase difference with no interfringe counting by means of the
application of phase shifting interferometry.

The method is based on the divisibility properties of integers treated
by the number theory.”® Here are the basic data indispensable for
understanding the idea of the method.

If integers, a and b, leave the same remainder on division by m, they
are called congruent modulo m. To express this fact one writes:

a =b(mod m) (10)

For example, 2 is congruent with 7 modulo 5, as, on division by 5, the
numbers 2 and 7 leave the same remainder r =2. All these numbers
2,7,12,...,5q +2, where q is any integer, make the number class
modulo 5. Any class number is called the residue modulo 5. The
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Fig. 1. Complete residue systems modulo 5.
residues giving all possible remainders r =0, 1,2, ..., m — 1 make up

a complete residue system modulo m. This can be presented
graphically.

Figure 1 shows a graph for m = 5. On the N-axis there is a natural set
of numbers. The complete residue systems are marked with points.
They are reiterated with a period equal to the modulo m and are
reflexed by an integer saw-shaped function.

If, in congruence (eqn (10)), one of the numbers is unknown, then,
by calling it X, one can write:

X =b(mod m) (11)

If some X = X, satisfies the congruence (eqn (11)), it will be satisfied
by all
X = X,(mod m) (12)

This class of numbers will be the solution of the congruence. Of
interest is the solution of the congruence system of the kind in eqn (11):

X =b,(mod m,)
X= bz(mod m2) (13)

X =b,(mod m,)

the moduli being not equal to each other and are not relative primes.
It is necessary to find a solution, eqn (12), which would satisfy all the
congruences in eqn (13) simultaneously.
In number theory a theorem is proved according to which

X0=M1M{b1+M2Méb2+ Somee +Mle’cbk (14)

m=mm,---m; (15)
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where M, and M, are the numbers found in the conditions:
Msms = mlmz ey
MM = 1(mod my)

where S takes on values from 1 to k in succession.
Consider one simple example.
Solving the system of two congruences

X =b,(mod 4)
X =b,(mod 5)
we obtain from eqns (14)—(17):
M, =5 M,=4
Mi=1 M;,=4
m=20  X,=5b,+ 16b,

and the result is as follows:
X =5b, + 16b,(mod 20)

315

(16)
(17)

(18)

(19)

If one displays the congruence system, eqn (18), and its solution, eqn
(19), graphically (Fig. 2), then each congruence of the system presents
an integer saw-shaped function with the periods m;=4 and m,=>5,
respectively (like the graph in Fig. 1), and the solution is the same

function but with the period m = 20.
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Fig. 2. System of two congruences and its solution.
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For example, for b, =3 and b, =2 one has X,=47 and X = |47|,,=
7, as shown in Fig. 2.

How is the above mentioned mathematics related to interferometry?
The point is that the phase of the light wave is a linear function of the
coordinate, and the integer functions discussed above. are also linear
functions. Mathematical methods of solution of integer congruences
prove to be adequate to the task of the total phase difference
determination in interferometry.®'! By approaching the result obtained
in the number theory to the task being solved in interferometry, it can
be interpreted as follows. If linear periodic functions are set by their
entire values and their periods are relative primes, then a linear
periodic function with the period equal to the product of the periods of
these functions can also be put in single-valued correspondence with
them, and this function determines the total phase difference.

Let the total phase difference

¢ =2aN+ ¢ (20)
where N is an entire interfringe and ¢ is a phase shift within 2.
F
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Fig. 3. Total phase difference measurement for a period ratio 5/4.
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One can determine the total phase difference ¢, not knowing N and
measuring only @, due to the method proposed.

Let the value of ¢ be measured as shown in Fig. 3. The measurement
is carried out with two different periods of interference fringes X, and
X, (X,/X,=5/4). The phases of two harmonic functions F, and F in
parts corresponding to the periods are also shown in Fig. 3. They have
a kind of linear periodic function. It is necessary to regard these
functions as the integer saw-shaped ones shown in Fig. 2. Measuring
the phase within one period only, one has ¢,=3 and ¢,=4,
respectively (Fig. 3). Then it follows from Fig. 2 that the total phase
difference ¢ =19 in the same units, i.e. 4-75 of period X, or 3-75 of
period X,.

As another example, two computer-generated patterns of phase fields
are shown in Fig. 4(a) and (b). They are obtained for the ratio of

(©) (d)
Fig. 4. (a) and (b) Two computer generated patterns for an interfringe period ratio
473/502. (c) Phase map. (d) Three dimensional contour map.
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interfringe periods 473/502. Such a ratio will be further used in the
physical experiment. For this case a solution like eqn (12) is the
following congruence:

X =131022b, + 106425b, (mod 237446) (21)

The congruence, eqn (21), is used to unwrap the phase ambiguities
and, as a result, a phase map is presented in Fig. 4(c). Figure 4(d)
shows the same phase map in the form of a three-dimensional diagram.

Thus, if measurements are carried out by the phase shifting method
with different periods of interfringes X,, X, . .., X,, then one obtains
phase shifts ¢,, @,, ..., @, respectively. Integers m,, m,, . . ., m; and
bi, b,, . .., b, with a register length determined by the precision of the
measurements are put in correspondence with these values. The
integers m,, m,, . .., m; must be relative primes. Now a system of
congruences, eqn (13) whose right parts equal b,, b,,..., b, and
whose moduli equal m,, m,, . . . , m,, respectively, is solved. According
to eqns (14)-(17) a value of X is obtained, which single-valuedly
determines the total phase difference:

¢:.=X/m, i=E 2. ok (22)

The index i shows that the phase value may be determined in units of
any period m,. It must be noted that ¢; is not an integer but a real
number, obtained to an accuracy within 1/m;. The maximum value of
the total phase difference being measured is confined to the value of
Xpax =mmy - - - my.

To sum up, the phase shifting interferometer alongside recognized
advantages acquires one more advantage owing to the method pro-
posed; namely, a substantial increase in the measurement range.

A very interesting and specific peculiarity of integer interferometry is
the fact that the range of measurement depends on phase measurement
accuracy within 2.

If the periods and the phases are expressed by one valid digit, for
example, interfringe spaces are 0-5um and 0-6 um, then integers
m,; =15 and m, = 6 are put in correspondence with these values, and the
range limit is m;m, =30, i.e. 3 um. If the measurement accuracy is 10
times higher and the periods are expressed by two-digit numbers:
0-53 um and 0-63 um, then integers are 53 and 63 and the range limit is
3339, 1.e. 3339 pm.

One can increase the measurement range with the same accuracy by
taking measurements with three or more values of periods. By way of
example, if one adds to the two periods 0-53 um and 0-63 um, as in the
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previous case, a third period 0-43 um, then the range increases to
nearly 1500 pm. .

It should be noted that, on the face of it, the technique of absolute
measurement of block gauges using Koster’s interferometer is like the
proposed method. However, the two methods are essentially different.
It is supposed a priori that a length of block gauge is known with error
Al < AA/(A,— A, and one measures the value Al with Koster’s
interferometer. Two phases with periods A; and A, may be put in
mutually single-valued correspondence with Al, and a length of block
gauge can be obtained by adding [ =/, + Al

For comparison of the integer interferometer and Koster’s interfero-
meter one considers the same situation, when two periods are used:
A, =0:529 um and A, =0-633 um.

The measurement range of Koster’s interferometer is Al = 0-529 X
0-633/(0-633 — 0-529) =~ 3-2 um and the range of the integer interfero-
meter is 529 X 0-633 =~ 335 um.

EXPERIMENTAL RESULTS

Two interferograms are shown in Fig. 5(a) and (b). They were obtained
using a Twyman—Green interferometer for two interfringe periods, the
ratio of the first period to the second one is 4/3. The interfringe spaces
are changed by turning the mirror in the reference interferometer arm.
For the ratio 4/3 the accuracy of the phase determination will suffice as
1/4 in the first case and 1/3 in the second case. Such accuracy can be
obtained by eye, without a phase shift method.

By using eqns (12)-(17) one has m; =4 and m, =3 and solves the
congruence system

X =b; (mod 4)
X =b, (mod 3)
The result is as follows:
X =9b, + 4b, (mod 12) (23)

The interferograms in Fig. 5 show the points where the phase
differences of two interwaves are determined. For these points the
integer phase values are found within 2. Evidently, from Fig. 5 the
pair of values b, and b, are as follows:

bi=1;0;3;2
b,=0;2;1;0
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(b)

Fig. 5. Two interferograms for an interfringe period ratio 4/3.

On substituting the values of b, and b, into eqn (23) one determines,

respectively:
X=9;8;7;6
These integer values are the total phases at the given points when the
object under study is tilted. Expressing the total phases by way of the
quantity of interfringes one obtains for a space equal to four:
¢ =2-25;2;1-75; 1-5

respectively.
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It should be noted that one has an absolute value of phase difference,
not knowing a zero fringe and not counting interfringes. In this example
the measurement limit is three interfringes in Fig. 5(a) or four
interfringes in Fig. 5(b).

The following experiment also was performed with the help of a
Twyman—Green interferometer but using a controllable phase shift and
different wavelengths. For generation of various wavelengths an argon
laser Spectra-Physics 2020 was used. In this experiment two wave-
lengths were taken: 472-7 nm and 501-7 nm. The phase shift is changed
by the mirror attached to the PZT. For every wavelength four
interferograms were obtained. The series of fringe patterns for
472-7nm is shown in Fig. 6. The interferograms were digitized and
256 X 256 X 8 bit sequences were recorded for subsequent processing.

@ | 0

© ()
Fig. 6. Four interferograms for wavelength 472-7 nm with phase shifts (a) 0, (b) x/2;
(c) &, (d) 3x/4.
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The phase maps were determined using the algorithm in eqns (5) and
(6). Here the same problems arise as when using a two-wavelength
phase shifting interferometer,'” although the methods are essentially
different. The largest errors can be attributed to chromatic aberration.
It should not move the fringes or change the size of the interferogram
by more than a pixel in order for good results to be obtained. The
results are presented in Fig. 7(a) and (b) for 472-7 nm and 501-7 nm
wavelengths, respectively.

Now moduli m, =473 and m, =502 are put in correspondence with
these wavelengths, and eqn (21) is used for unwrapping the phase
ambiguities. In this case a theoretical measurement limit is 273-5 um. In

(b)

(c) (d)
Fig. 7. Phase fields for (a) 472-7nm and (b) 501-7nm. (c) Phase map after
unwrapping the phase ambiguities. (d) Cross-section of surface under study:scale is
0-25 pm per square.
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practice, the limit was about 20 um, and we could use the method
which we called ‘correction of flagrant errors’ for obtaining the exact
values.' Figure 7(c) shows the field of the total phase difference and
Fig. 7(d) presents the cross-section of surface under study.

CONCLUSION

The data presented in this paper demonstrate the. successful use of a
new method—integer interferometry—for substantial extension of the
measurement limits of the well-known method—phase shifting inter-
ferometry. The solutions of a congruence system are used for unwrap-
ping the phase ambiguities. Computer simulations and physical experi-
ments confirm the efficiency of the method proposed. A significant
advantage of integer interferometry is a complete automatic processing
of fringe patterns with any shape and degree of complexity.
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